

# NOVEL DERIVATIVES OF 3-(DIPROPYLAMINO)CHROMAN. Interactions with 5-HT<sub>1A</sub> and $D_{2A}$ receptors.

Patrizia Caldirola, a.c Ratan Chowdhury, a.d Lena Unelius, b Nina Mohell, b Uli Hacksell, a.e and Anette M. Johansson.

Received 22 February 1999; accepted 28 April 1999

**Abstract:** Novel 8-aryl and 8-aroyl substituted derivatives of 3-(dipropylamino)chroman are described. The compounds have been prepared by a palladium catalyzed reaction of iodoarenes and a stannylated derivative of  $[\eta^6-3-(\text{dipropylamino})\text{chroman}]\text{Cr(CO)}_3$ . Several of the compounds have high affinity for 5-HT<sub>1A</sub> receptors whereas the affinity for D<sub>2A</sub> receptors is lower, the 8-arylated derivatives being slightly more potent than the 8-aroylated analogues. © 1999 Elsevier Science Ltd. All rights reserved.

During the last ten years, various derivatives of 3-aminochroman have been prepared and evaluated as oxygen isosters of 2-aminotetralins. For example, 1 (5-OH-DPAC)<sup>1</sup> and 2 (8-OH-DPAC)<sup>1</sup> ac.d.<sup>2</sup> have been synthesized as isosters of the well-characterized 5-HT<sub>1A</sub> and D<sub>2</sub> receptor agonists 8- and 5-hydroxy-2-(dipropylamino)tetralins 3 (8-OH-DPAT)<sup>3</sup> and 4 (5-OH-DPAT).<sup>4</sup> Compound 1 has been characterized as a selective 5-HT<sub>1A</sub> receptor agonist ac.d. whereas 2 appears to be a D<sub>2</sub> receptor agonist with selectivity for presynaptic receptors. In addition, the interaction of 2 with D<sub>2</sub> receptors was shown to be stereoselective, the (-)-enantiomer being the most potent isomer. These results are in good agreement with those of the corresponding 2-aminotetralins.

In a few recent reports on derivatives of 1, compound (+)-5 was identified as a potent and selective 5-HT<sub>1A</sub> receptor agonist.<sup>7,8</sup> Compound 6 appears to be a potent DA receptor agonist and 7 exhibits a mixed dopaminergic and serotonergic profile.<sup>9</sup> Furthermore, the recently published chroman derivative 8 appears to be a silent 5-HT<sub>1A</sub> receptor antagonist.<sup>10</sup> However, few analogs of 2 have yet appeared in the literature. <sup>1c,2,5b,11</sup>

In the present communication we describe the preparation and pharmacological evaluation of a series of novel 8-aryl and 8-aroyl substituted derivatives of 3-(dipropylamino)chroman. The novel compounds were \*e-mail: anette@bmc.uu.se FAX: +46-18-471 4024

synthesized by using palladium catalyzed coupling reactions of iodoarenes and stannylated ( $\eta^6$ -3-(dipropylamino)chroman)Cr(CO)<sub>3</sub> complexes. The affinities of the compounds for central 5-HT<sub>1A</sub> and D<sub>2A</sub> receptors were evaluated *in vitro*. Several of the new derivatives had high affinity to 5-HT<sub>1A</sub> receptors whereas the affinity to D<sub>2A</sub> receptors was lower.

## Synthesis.

The synthesis of the racemic 8-arylated and 8-aroylated derivatives of 2-(dipropylamino)chroman was performed as shown in Scheme 1. *Endo*- or *exo*-9<sup>12</sup> was regioselectively stannylated in the C8-position by treatment with BuLi followed by the addition of tributylchlorostannane to give the *endo*- or *exo*-10, respectively. Palladium catalyzed coupling reactions between the *endo* or *exo*-10 isomers and an iodoarene followed by light induced decomplexation of the Cr(CO)<sub>3</sub> group produced either a separable (flash chromatoography) mixture of arylated and aroylated products or selectively one of the products (Table 1). In the reactions leading to the 8-aroylated analogs, the inserted CO is probably donated from the Cr(CO)<sub>3</sub> group, as no external CO is added.<sup>13</sup>

### In vitro radioligand binding studies.

The ability of the novel compounds to inhibit [ ${}^{3}$ H]8-OH-DPAT binding to 5-HT<sub>1A</sub> receptors in rat cortical and hippocampal membranes and [ ${}^{3}$ H]raclopride binding to cloned human D<sub>2A</sub> receptors expressed in mouse fibroblast (Ltk) cells *in vitro* are given in Table 2.

Several of the novel derivatives displayed high affinity and selectivity for  $5\text{-HT}_{1A}$  receptors over  $D_{2A}$  receptors. In general, the aryl substituted analogs had higher affinity for both  $5\text{-HT}_{1A}$  and  $D_{2A}$  receptors than the aroylated derivatives. In the arylated series the electron withdrawing substituent  $CF_3$  (14a) considerably decreased the affinity for  $5\text{-HT}_{1A}$  receptors. The 3-furyl analogs 17a and 17b displayed slightly lower affinity to  $5\text{-HT}_{1A}$  receptors than the corresponding 3-thienyl derivatives 16a and 16b. With the exception of 17a, which has a moderate affinity to  $D_{2A}$  receptors ( $K_i$ =47.5 nM), the compounds tested displayed more than a 10 fold lower affinity to  $D_{2A}$  receptors than to  $5\text{-HT}_{1A}$  receptors.

Table 1. Physical Data of Some Novel Chroman Derivatives.

| substrate | "Pd"    | Pro<br>Compd | duct<br>Ar             | yield<br>(%)    | mp, (°C)           | recrystn<br>solvent <sup>b</sup> | Anal.º                                                                                                                                                                        |
|-----------|---------|--------------|------------------------|-----------------|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exo-10    | A + CuI | 11a          | Ph                     | 60              | 195-198            | Ţ                                | C <sub>21</sub> H <sub>27</sub> NO·HCl                                                                                                                                        |
| 10        |         | 11b          | Ph                     | 26              | 153-154            | II                               | $C_{22}^{31}H_{27}^{31}NO_2 \cdot 1.5C_2H_2O_4$                                                                                                                               |
| exo-10    | A + CuI | 12a<br>12b   | 2-MeOPh<br>2-MeOPh     | 29<br>20        | 189-191<br>125-128 | -                                | $C_{22}H_{29}NO_2 \cdot HC1$<br>$C_{23}H_{29}NO_3 \cdot HC1$                                                                                                                  |
| exo-10    | A + CuI | 13a          | 4-MeOPh                | 23 <sup>d</sup> | 186-188            | I                                | C <sub>22</sub> H <sub>29</sub> NO <sub>2</sub> ·HCl                                                                                                                          |
| endo-10   | Α       | 13b          | 4-MeOPh                | 39°             | 153-155            | I                                | C <sub>23</sub> H <sub>29</sub> NO <sub>3</sub> ·HCl                                                                                                                          |
| exo-10    | A + CuI | 14a          | 4-CF <sub>3</sub> Ph   | 55 <sup>f</sup> | 203-205            | I                                | $C_{22}H_{26}F_3NO\cdot HCl\cdot 0.5H_2O$                                                                                                                                     |
| endo-10   | Α       | 14b          | 4-CF <sub>3</sub> Ph   | 50 <sup>g</sup> | 139-141            | I                                | $C_{23}H_{26}F_3NO_2\cdot HCl$                                                                                                                                                |
| exo-10    | В       | 15b          | 4-MeCOPh               | 23h             | 150-152            | I                                | $C_{24}H_{29}NO_3\cdot HCl$                                                                                                                                                   |
| exo-10    | A + CuI | 16a<br>16b   | 3-thienyl<br>3-thienyl | 26<br>48        | 187-188<br>153-155 | I<br>I                           | C <sub>19</sub> H <sub>25</sub> NOS·HCl<br>C <sub>20</sub> H <sub>25</sub> NO <sub>2</sub> S·HCl                                                                              |
| endo-10   | A + CuI | 17a<br>17b   | 3-furyl<br>3-furyl     | 20<br>41        | 119-121<br>167-170 | I<br>I                           | C <sub>19</sub> H <sub>25</sub> NO <sub>2</sub> ·1.5C <sub>2</sub> H <sub>2</sub> O <sub>4</sub><br>C <sub>20</sub> H <sub>25</sub> NO <sub>3</sub> ·HCl·1.75H <sub>2</sub> O |

"Pd": A=Pd<sub>2</sub>(dba)<sub>3</sub>, Ph<sub>3</sub>As; B=(PPh<sub>3</sub>)<sub>4</sub>Pd. <sup>b</sup>Recrystallization solvent: (I) Ether/MeOH; (II) MeCN. <sup>c</sup>The compounds were analyzed for C, H and N and the results were within 0.4% of theoretical values. Compound 15b was analyzed by EI-HRMS; 13b (7%) was also isolated. 13a was not detected by GC analysis. 14b (15%) was also formed as determined by GC analysis. 14a was not detected by GC analysis. 15a (10%) was also formed as determined by GC analysis.

Table 2. Affinities of the Novel Derivatives to Rat Brain 5-HT<sub>1A</sub> Receptors Labelled by [<sup>3</sup>H]8-OH-DPAT and Cloned Human D<sub>2A</sub> Receptors Expressed in Ltk<sup>-</sup> Cells Labelled by [<sup>3</sup>H]Raclopride.

|                       |                      | $K_i (nM)^a$                           |                                                   |  |  |
|-----------------------|----------------------|----------------------------------------|---------------------------------------------------|--|--|
| Compd                 | Ar                   | [³H]8-OH-DPAT<br>(5-HT <sub>1A</sub> ) | [ <sup>3</sup> H]Raclopride<br>(D <sub>2A</sub> ) |  |  |
| 11a                   | Ph                   | $1.1 \pm 0.1$                          | 590 ± 20                                          |  |  |
| 12a                   | 2-MeOPh              | $1.1 \pm 0.1$                          | > 1000                                            |  |  |
| 13a                   | 4-MeOPh              | $1.3 \pm 0.1$                          | $1090 \pm 120$                                    |  |  |
| 14a                   | 4-CF <sub>3</sub> Ph | $63.8 \pm 17.7$                        | $763 \pm 130$                                     |  |  |
| 16a                   | 3-thienyl            | $1.1 \pm 0.2$                          | $398 \pm 160$                                     |  |  |
| 17a                   | 3-furyl              | $5.7 \pm 2.1$                          | $47.5 \pm 2.8$                                    |  |  |
| l1b                   | Ph                   | $4.0 \pm 0.5$                          | >1000                                             |  |  |
| 12b                   | 2-MeOPh              | $60.8 \pm 0.9$                         | >1000                                             |  |  |
| 13b                   | 4-MeOPh              | $10.5 \pm 1.0$                         | >1000                                             |  |  |
| 14b                   | 4-CF <sub>3</sub> Ph | $47.2 \pm 4.6$                         | >1000                                             |  |  |
| 15b                   | 4-MeCOPh             | $11.0 \pm 0.3$                         | >1000                                             |  |  |
| 16b                   | 3-thienyl            | $7.3 \pm 0.7$                          | >1000                                             |  |  |
| 17b                   | 3-furyl              | $16.4 \pm 7.7$                         | $1360 \pm 45$                                     |  |  |
| l <sup>b</sup>        |                      | 83                                     | >3000                                             |  |  |
| <b>2</b> <sup>b</sup> |                      | >3000                                  | 128                                               |  |  |

\*For experimental details see ref 16. The  $K_i$  values are means  $\pm$  standard error of 2-3 experiments performed in duplicate. \*From ref 1a,  $IC_{60}$ -values, 5-HT<sub>1A</sub> receptors labelled by [³H]5-HT and D<sub>2</sub> receptors labelled by [³H]spiroperidol.

### Conclusion.

The present study shows that replacement of the C8 hydroxyl group in the potent and selective D<sub>2</sub> receptor agonist 2 by an aryl or aroyl group results in a new class of chroman derivatives with high affinity and selectivity



for 5-HT<sub>1A</sub> receptors. In terms of structure-affinity relationship these results are in agreement with the recently published data on the high affinity 5-HT<sub>1A</sub> receptor ligand 18 (K<sub>i</sub>=1.8 nM) and derivatives thereof. Therefore, it is possible that these novel aminochroman derivatives have a similar mode of interaction with 5-HT<sub>1A</sub> receptors as 18. The series of compounds presented herein may be valuable for the evaluation of a recently proposed homology based 5-HT<sub>1A</sub> receptor model 14.15 and it may also provide leads for drug development. Current studies

are aimed at exploring the pharmacology of the enantiomers of these novel 5-HT<sub>1A</sub> receptor ligands.

#### Acknowledgment.

Financial support was obtained from Astra Arcus AB. Skillful technical assistance by Gun Torell Svantesson and Christina Fährstedt in the binding assays is gratefully acknowledged.

#### References and Notes.

- a) Thorberg, S.-O., Hall, H., Åkesson, C., Svensson, K., Nilsson, J.L.G. Acta Pharm. Suec. 1987, 24, 169-182.
  b) Cossery, J.M., Perdicakis, C., Coudert, G., Guillamet, G., Pichat, L. J. Labelled. Comp. Radiopharm. 1987, 25, 833-853.
  c) Al Neirabeyeh, M., Reynaud, D., Podona, T., Ou, L., Perdicakis, C., Coudert, G., Guillaumet, G., Pichat, L., Gharib, A., Sarda, N. Eur. J. Med. Chem. 1991, 26, 497-504.
  d) Podona, T., Guardiola-Lemaître, B., Caignard, D.-H., Adam, G., Pfeiffer, B., Renard, P., Guillaumet, G. J. Med. Chem. 1994, 37, 1779-1793.
- b) Wise, L.D., DeWald, H.A., Hawkins, E.S., Reynolds, D.M., Heffner, T.G., Meltzer, L.T., Pugsley, T.A. J. Med. Chem. 1988, 31, 688-691.
- 3. a) Arvidsson, L.-E., Hacksell, U., Nilsson, J.L.G., Hjorth, S., Carlsson, A., Lindberg, P., Sanchez, D., Wikström, H. J. Med. Chem. 1981, 24, 921-923. b) Middlemiss, D.N., Fozard, J.R. Eur. J. Pharmacol. 1983, 90, 151-153.
- a) McDermed, J.D., McKenzie, G.M., Freeman, H.S. J. Med. Chem. 1979, 19, 547-549.
  b) Tedesco, J.T., Seeman, P., McDermed, J.D. Mol. Pharmacol. 1979, 16, 369-381.
- a) Vermue, N.A., Kaptein, B., Tepper, P.G., de Vries, J.B., Horn, A.S. Arch. Int. Pharmacodyn. 1988, 293, 37-56.
  b) Horn, A.S., Kaptein, B., Vermue, N.A., de Vries, J.B., Mulder, T.B.A. Eur. J. Med. Chem. 1988, 23, 325-328.
- a) Hacksell, U.; Liu, Y.; Yu, H.; Vallgårda, J.; Backlund Höök, B.; Johansson, A.M.; Lewander, T. Drug Des.
   Discovery, 1993, 9, 287-297.
  b) Hacksell, U.; Johansson, A.M.; Karlén, A.; Svensson, K.; Grol, C.J. In "Chirality
   and Biological Activity", Eds. H. Frank, B. Holmstedt, and B. Testa, Alan R. Liss, Inc., N.Y., 1989, pp 247-266.
- Cossery, J.M., Gozlan, H., Spampinato, U., Perdicakis, C., Guillaumet, G., Pichat, L., Hamon, M. Eur. J. Pharmacol. 1987, 140, 143-155.
- 8. Marot, M., Comoy, C., Viaud, M.C., Rettori, M.C., Pfeiffer, B., Morin-Allory, L., Guillaumet, G. Bioorg. Med. Chem. Lett. 1996, 6, 1077-1082.
- 9. Andersson, B., Wikström, H., Hallberg, A. Acta Chem. Scand. 1990, 44, 1024-1028.
- Johansson, L.; Sohn, D.; Thorberg, S.-O.; Jackson, D.M.; Kelder, D.; Larsson, L.-G.; Rényi, L.; Ross, S.B.;
  Wallsten, C.; Eriksson, H.; Hu, P.-S.; Jerning, E.; Mohell, N.; Westlind-Danielsson, A. J. Pharmacol. Exp. Ther.
  1997, 283, 216-225.
- 11. Chumpradit, S.; Kung, M.-P.; Vessotskie, J.; Foulon, C.; Mu, M.; Kung, H.F. J. Med. Chem. 1994, 37, 4245-4250.
- 12. Brisander, M., Caldirola, P., Johansson, A.M., Hacksell, U. J. Org. Chem. 1998, 63, 5362-5367.
- 13. Caldirola, P., Chowdhury, R., Johansson, A.M., Hacksell, U. Organometallics, 1995, 14, 3897-3900.
- Hedberg, M.H., Linnanen, T., Jansen, J.M., Nordvall, G., Hjorth, S., Unelius, L., Johansson, A.M. J. Med. Chem. 1996, 39, 3503-3513.
- 15. Hedberg, M.H.; Jansen, J.M.; Nordvall, G.; Hjorth, S.; Unelius, L.; Johansson, A.M. J. Med. Chem. 1996, 39, 3491-3502.
- 16. In vitro radioligand binding to 5-HT<sub>IA</sub> and D<sub>2A</sub> receptors, see: Jackson, D.M.; Mohell, N.; Georgiev, J.; Bengtsson, A.; Larsson, L.-G.; Magnusson, O.; Ross, S.B. Naunyn-Schmiedeberg's Arch. Pharmacol. 1995, 351, 146-155 and Malmberg, Å.; Jackson, D.M.; Eriksson, A.; Mohell, N. Mol. Pharmacol. 1993, 43, 749-754.